

Libraries and Data
Source Connectors

Best practices

North & South America
CloverDX Inc.
1101 Wilson Blvd
6th Floor
Arlington VA 22209
United States

EMEA/APAC
Javlin Ltd. / CloverDX
46-48 Red Lion Court
Park St
London SE1 9EQ
United Kingdom

Czech Republic
Prague
CloverDX a.s.
Vinohradská 174
130 00 Prague
Czech Republic

CloverDX replaces Javlin and CloverETL brands. Company registration information:
Registered in USA: CloverDX Inc. 2111 Wilson Blvd, Suite 320, Arlington VA 22201, United States, EIN: 42-1770048
Registered in England: Javlin Ltd. 10 Lonsdale Gardens, Tunbridge Wells, Kent TN1 1NU Company number: 08213115 VAT: GB15622551
Registered in Czech Republic: CloverDX a.s. Betlémské náměstí 251/2, 110 00 Praha 1, Czech Republic IČ: 28213874 DIČ: CZ28213874

www.cloverdx.com
info@cloverdx.com

www.cloverdx.com info@cloverdx.com

Table of Contents

Creating beautiful, understandable data sources ... 3

Initializing libraries (pre-generating metadata) ... 6

Managing user credentials and secrets ... 7

How to handle Database/JDBC Connections ... 8

OAuth2 connections in Data Sources ... 9

Optimizing performance.. 10

Installing multiple instances of a single data source .. 10

Live debugging and testing libraries ... 11

Using Java code in libraries .. 11

File structure of a Data Source Connector ... 12

Requirements for a Data Source Connector ... 13

Additional recommendations for Data Source Connectors .. 15

Job Documentation Tips .. 16

www.cloverdx.com info@cloverdx.com

Creating beautiful, understandable data sources

Data sources can be enhanced to make them more understandable and user-friendly. This involves

adding clear and concise descriptions, labels, icons, and other information that will be displayed in

the Data Catalogue. By doing so, you can present your resources in a professional and appealing

way.

The following is a list of possibilities for customizing your Data Source Connectors:

• Name of the Data Connector shown in the Data Catalog is taken from the file name of the

subgraph.

• Description can be set in Properties → Description (click an empty area of a

graph/subgraph and then navigate to Properties tab at the bottom of your screen). This

description will visible under the name of the Data Source in Data Catalog.

• Use icons and subgraph categories to enhance look-and-feel, adhering to built-in

conventions, such as green for readers and blue for writers.

o Create a separate directory ${PROJECT}/icons to store icons used in

subgraphs.

o Use properly sized PNG icons, including 64 x 64 px, 32 x 32 px, and 16 x 16 pixels.

• CloverDX graph/subgraphs stores information about author. It could be updated only in

source code (internal XML).

Properties tab of a subgraph with Description, Author, Category and Icon

www.cloverdx.com info@cloverdx.com

• Provide human-readable labels and descriptions for graph parameters (Edit parameters

in Outline)

Edit parameters dialog with Description and Label

• The labels and descriptions for graph parameters will appear in multiple locations, including

the library configuration dialog in CloverDX Server UI, parameter mapping dialog when using

a component from the Library in CloverDX Designer, and CloverDX Wrangler UI.

• There is a special parameter file library.prm. The file is not created automatically.

However, if you create this parameter file in your project, all parameters from this file will be

available in CloverDX Server UI for settings.

• This is a global configuration file that the administrator can view and modify values of

parameters.

• If values are set in this parameter file, they will be used in the execution. However, the

parameters could be overridden when the graph is executed. In that case, values specified

in library.prm could be considered as default values.

Here you can see example of three graphs parameters in CloverDX Designer and the

corresponding view from CloverDX Server UI.

www.cloverdx.com info@cloverdx.com

• Use appropriate Editor types for your parameters, such as enums, numeric, or boolean, to

simplify the library setup process for administrators. Descriptions are visible as a tooltip on

the info (i) icon.

•

Edit parameters dialog, using enumerations will help users provide correct values

Parameter declared in CloverDX

Designer.

Can be modified in the Server

Console after the library has been

installed.

www.cloverdx.com info@cloverdx.com

• Typically, the parameters are connection details (e.g., to a database or an external service -
API keys, passwords).

• Consider which library parameters will be visible to the administrator who can then provide

global settings for your library. This allows users to utilize the library without needing to have

in-depth knowledge of all the settings.

• Some of the parameter values, such as connection details, could be necessary for the library

initialization.

• If a Data Source Connector public parameter is defined, it will be visible in CloverDX

Wrangler. To assist Wrangler users in selecting and using your Data Source Connector,

provide a label, a description, and an editor type for this parameter. If possible, use enums

to prevent incorrect user input.

Initializing libraries (pre-generating metadata)

A library can contain a so called “initialization job” which can be used to perform initial setup of the

library after installation. For example, generic libraries will have initialization jobs that pull custom

metadata and other configuration based on a specific connection which is only available after the

library has been installed and configured.

The initialization job can be any graph or jobflow that has been designated as an initialization job

during export of the library.

A Library initialization job will automate setup of configuration that cannot be done when the library is

created and must be performed after the library is installed/instantiated (e.g., generating metadata

based on provided connection to source system). It is usually executed by CloverDX Server

administrator during Library installation & initialization as one of the last steps or on demand anytime

later (when a refresh is needed due to changes in configuration(s)). Initialization graph could also be

executed automatically via Scheduler defined on CloverDX Server (may be used for periodical

updates of dynamic structures within installed Library).

Init graphs can also rewrite default parameter files such as library.prm with some pre-defined

values.

Example of when and how to use the initialization graph:

• Your library connects to a cloud-based CRM system, e.g. to Deals, Customers, or Contacts.

• The entities in the CRM have custom fields, so you need to authenticate to your specific

account and then read the entities, including your custom fields.

• As a first step, configure the connection details to the CRM system. This setting can be done

in the CloverDX Server UI in the library configuration section.

www.cloverdx.com info@cloverdx.com

• The next step is to run the initialization graph, which establishes a connection to the target

system, reads the structure, and generates metadata of the entities. This metadata is then

stored within the library.

• From this point on, users of the library (in CloverDX project or in Wrangler) can access the

auto-propagated metadata in the same way as it is defined in your CRM system.

• In the settings, you can specify a list of required fields, in case you only need a subset of all

the fields.

• Additionally, the initialization graph has the potential to change the library.prm file.

Managing user credentials and secrets

If your library requires user credentials or secrets, such as private tokens, it's important to store these

parameters securely. When you use secrets as a graph parameter (e.g., in the library.prm file),

you can mark them as 'secure' to protect them from unauthorized access and comply with security

best practices. Please note that you will need to set a Master password in CloverDX Server to enable

secure parameters. This password is used to encrypt and decrypt the secure parameters.

Another option is to use secret managers to retrieve the value of the parameter from a secure storage.

This can be useful if you don't want to store sensitive data in the library.prm file. For more

information about using secret managers, please refer to the documentation.

https://doc.cloverdx.com/latest/server/secret-managers.html#id_secret_managers

www.cloverdx.com info@cloverdx.com

How to handle Database/JDBC Connections

• To use a database connection in your Library, provide all the connection details as

parameters. This will make your Library more flexible and reusable.

• Specify the connection parameters in the CloverDX connection details. This will ensure that

your Library can connect to the database without errors.

Edit DB Connection dialog – parameters used for the connection details.

• Store the connection parameters in a library.prm parameter file. This will allow you to set

the database connection in the CloverDX Server UI and manage it centrally.

• Use secure parameters for any sensitive information, such as passwords. This will protect

your data from unauthorized access and comply with security best practices.

• If possible, let users choose the JDBC connection name. This will give them more control

over the database connection and avoid conflicts with other connections.

www.cloverdx.com info@cloverdx.com

Connection parameters from Server UI, the values will be propagated into the connection.

OAuth2 connections in Data Sources

When your library needs to connect to a cloud-based system, it often requires an OAuth2 connection.

In such cases, it's recommended to use an external connection from your library. The file URL for the

connection can be defined using a graph parameter, which allows for greater flexibility and easier

configuration.

After you create the connection, you can specify the path to the connection in the library configuration.

This approach simplifies the process of setting up and managing connections and allows your library

to seamlessly integrate with external systems.

To use OAuth2 connection in your library, you can follow these steps:

Check out a video tutorial on how to set up OAuth2 connection for a library at

https://www.youtube.com/watch?v=8R5ZUAoYE7I&ab_channel=CloverDX

Quick summary

• Firstly, create an external OAuth2 connection in the server's sandbox and authorize it (from
CloverDX Designer).

• After that, create a parameter in library.prm that specifies the File URL of the connection.

The URL should be in the following format:
sandbox://<sandbox_code>/conn/OAuthConnection.cfg

• Finally, use the created parameter in your library code to access the OAuth2 connection.

https://www.youtube.com/watch?v=8R5ZUAoYE7I&ab_channel=CloverDX

www.cloverdx.com info@cloverdx.com

Optimizing performance

The Data Source Connector should implement a preview mode in which only a limited number of

records is requested by the Server, thus allowing the connector to save API calls or data transfers. If

the Connector ignores the preview mode, the initial use of the Data Source will have delays in the

user interface.

The preview mode is indicated to the Connector from the Server by passing a parameter called

NUM_OF_PREVIEW_RECORDS.

The Data Source Connectors utilized in Wrangler require the publication of a specific graph parameter

known as NUM_OF_PREVIEW_RECORDS. This parameter is critical in enabling Wrangler to display

a preview of the data sourced from the connector. It is essential to ensure that this parameter is

utilized correctly within the Data Source Connector to restrict the number of records returned.

Accurate implementation of this record limitation is crucial in achieving speedy previews.

When returning records, Wrangler works with the number of records retrieved. If the number of

records is less than or equal to the requested number, Wrangler assumes that the preview represents

the entire dataset. If a Data Source Connector only returns a random number of records, Wrangler

users may be misled into thinking that only that quantity of records is available.

To optimize performance, Wrangler caches the preview in its internal memory and thus does not

require data retrieval each time the preview is refreshed. However, for cloud-based systems, it is

crucial to consider API limit handling mechanisms such as retries and timeouts.

Installing multiple instances of a single data source

• CloverDX Server provides the capability of installing multiple instances of a single library.

This feature can be useful when there is a need to set up different instances of a library with

varying configurations. For example, it is possible to prepare a data source for different

groups of users such as "Customers for Finance" and "Customers for Marketing". In addition,

different instances of the same library could potentially return different metadata sets, such

as "Essential" vs "Full Record".

• Furthermore, it is possible to assign different permissions to different instances for specific

user groups.

• However, the downside to this approach is that the same library or functionality is duplicated

multiple times within the environment. To address this issue, it is recommended to extract

common functionality and place it in a separate library, "core/base" library, which can be

referenced by custom libraries that use this functionality.

• When another library is utilized as a dependency in a custom library, a parameter file named

dependencies.prm is automatically create in the root directory. This file contains

references to the dependent libraries and their respective versions. Typically, there is no need

to take care about the file, it is created automatically in CloverDX Designer. If you need, you

www.cloverdx.com info@cloverdx.com

can edit it and add labels and description to the parameters. This information will be visible

in CloverDX Server UI and could help administrator during the library installation.

Live debugging and testing libraries

• When utilizing a subgraph from a library in CloverDX Designer, it behaves as a black box,

and the user cannot view or modify the library's internal operations. However, in certain

situations, it can be helpful to examine the execution directly within the library, especially

when debugging the subgraph.

• To facilitate this process, it is possible to add the installed library from CloverDX Server to

CloverDX Designer in the same way as connecting to any other server project. In CloverDX

Designer, navigate to File -> New -> CloverDX Server Project, and provide the connection

details to the server. In the following step, select the desired library. It is important to note

that to import the library to CloverDX Designer, the user must have the necessary permission

to manage libraries.

• Once the library has been added, the user can interact with it just like any other sandbox,

including making direct changes to the codebase.

Using Java code in libraries

Sometimes projects require Java code to work. This code may include JAR files or custom classes

(or both). To ensure proper functionality, please follow these rules:

• If you need to include a JAR file into your library, put it in the lib directory and add a

reference to the classpath (in CloverDX Designer, go to: Project properties -> Java Build Path
-> Libraries, click ok Add JARs… and select JAR file from your ${PROJECT}/lib directory.
This applies especially to libraries and connectors that users cannot inspect. However, do
not bundle JAR files that are already on the classpath, such as Bouncy Castle or certain
database/JDBC drivers to avoid conflicts.

• If you need your own custom Java code to be used in the CloverDX library, put it into a
proper package. The naming pattern should look like this:
 com.<your company name>.libraries.<libraryName>.<className>.

Source code of the Java class should be stored in ${PROJECT}/trans directory. Java
classes from this directory are compiled automatically using CloverDX Designer during a
development (for every Java class in .java file, .class file will be created).

www.cloverdx.com info@cloverdx.com

Example of structure of Java libraries in CloverDX project.

• Make sure you include all the .class files (compiled Java classes) in your CloverDX library
(when exporting the library in Designer). Otherwise, the library will not be able to use the Java
classes. If you use a versioning system, you may want to store the compiled classes in the
repository (for example, if you use Git, do not exclude .class files in your .gitignore).

File structure of a Data Source Connector

Data Source Connectors are an integral part of the Library and are distributed in the form of a .clib

file. The .clib file, in essence, is a zip archive of a CloverDX Project. As such, if you rename the file

extension to .zip, you can extract the archive and gain access to the actual project contents.

Additionally, you can import the project directly to your CloverDX Designer.

The Library is essentially a standard CloverDX project that contains some additional files with specific

functionality.

• library.json

o Library descriptor file.

o Automatically created when a CloverDX Library is created in CloverDX Designer.

o It contains information about available public entitites, initialization graph, Data

Source Connectors.

• library.prm

o The Parameter file is used to define public parameters, of the Library.

o This files is not create automatically.

o All parameters included in this file are visible in the CloverDX Server UI and can be

used for global configuration of the library, such as user credentials or constants.

o It is recommended to use proper labels and descriptions for the parameters to help

the administrator with the settings.

o Please note that it is not necessary to set all parameters as public, as all parameters

in the file will be included in the server UI by default.

www.cloverdx.com info@cloverdx.com

o If you need to access these parameters, you can link the parameter file to your job

file.

• favicon.png

o Icon of the whole library.

o It is visible in CloverDX Catalogue.

o Use PNG file with a transparent background, maximum recommended width is

150px.

• README.md

o This file should contain a description of the functionality and installation details in

Markdown syntax.

o The documentation from this file is visible in the CloverDX Server UI.

o The README.md file is not created automatically.

o An example of the README.md file can be found in the Template Connector.

• dependencies.prm

o When you use another library as a dependency in your project, a parameter file

named dependencies.prm is automatically generated in the root directory.

o This file contains references to the dependent libraries and their versions.

o If you need, you can edit it and add labels and description to the parameters. This

information will be visible in CloverDX Server UI and could help administrator during

the library installation.

• icons/

o Directory dedicated to storing icons of subgprahs/Data Souce Connectors.

The rest of the project structure is the same as in any other CloverDX project.

Requirements for a Data Source Connector

• A unique name within the library.

• Only one output port that is used for outputting data into Wrangler

• The connector must declare output metadata.

Preview of a connector – one output port with auto-propagated metadata

• Output metadata could be either auto-propagated or statically assigned.

o If the metadata structure cannot be universally defined – e.g. it depends on a

particular configuration of a source system (e.g. CRM systems are being customized)

then you can generate the structure upon library installation via special purpose

https://www.markdownguide.org/basic-syntax/

www.cloverdx.com info@cloverdx.com

CloverDX job - an “init graph” which can be executed manually or be part of a

scheduled job – see below.

• Output metadata of a Data Connector cannot contain variant, map, list, byte or cbyte field

types (due to Wrangler limitations).

• A public graph parameter called NUM_OF_PREVIEW_RECORDS that defines how many

records to return when running in Wrangler's transformation design mode.

o In your data source connector, implement getting of this preview as fast as possible

by limiting the number of records early on. Users of Wrangler will wait for the

preview in the UI.

Parameters dialog – required NUM_OF_PREVIEW_RECORDS parameter

• Error handling with reasonable error messages propagated by Fail component.

• Alternatively, you can call function raiseError(string message) directly from CTL2

code. Again, please use descriptive error message.

Part of graph with error handling functionality

www.cloverdx.com info@cloverdx.com

Additional recommendations for Data Source Connectors

• Use secure graph parameters for sensitive input parameters such as passwords or tokens.

Be aware that secure parameters are encrypted with CloverDX Server master password

and won't work on another instance with different master password.

Parameters dialog – usage of secure property settings

• Keep subgraphs small and focused on accomplishing a single task. Use several layers of

subgraphs if needed (e.g. lower level subgraphs for core API calls, higher level subgraphs

already specialized with business logic to simplify usage and eliminate complex or excessive

configuration options). Don’t try to create too universal connectors – create several simple

ones instead. The CloverDX Data Catalog helps end users to navigate among options to find

the one most suited to their need.

Example of a template connector

• Test thoroughly before publishing them for users.

www.cloverdx.com info@cloverdx.com

Job Documentation Tips

Job documentation is optional but highly recommended for any public job in your library project. Job

documentation helps users understand what your jobs do and how they work.

Here are some tips for writing good job documentation:

• All documentation should be written in English unless otherwise specified by your target

audience or market requirements.

• Every public job in a library should have a Note with short explanation of what the job does.

This note should be separate (not encapsulate any components) and be visible when the job

is opened (i.e., not to far down or to the right - usually top-left corner of the job is best location).

• Difficult and non-obvious parts of each job should be explained in notes as well. Keep in mind

that even for libraries users can look inside in Job Inspector or via Designer when debugging.

• Each public subgraph in a library project must have a description. This is configured via

Description property of the job (please note, this is not a Note). This description is shown in

Data catalogue and in the Server UI when browsing libraries and therefore it should be short

(one or two sentences). Do not include too much detail here and place the most important

info at the beginning of description.

• Design the Data Source Connector with Wrangler's join limitations in mind. Prepare data that

meets the needs of Business users.

• For entities such as Customers, Contacts, Invoices, etc., include relevant references in the

Data Source Connector.

o For example, for an Invoice entity, join Customer and Contact information to provide

more context in your Data Source Connector.

• Consult with business users about their requirements and offer custom solutions for their

business cases.

• Use parameters for the Data Source Connector if there are filters (e.g., valid/invalid records).

This allows business users to easily adjust the data set returned by the connector.

• Prefer enums for parameters when possible. This helps users avoid input errors.

	Creating beautiful, understandable data sources
	Initializing libraries (pre-generating metadata)
	Managing user credentials and secrets
	How to handle Database/JDBC Connections
	OAuth2 connections in Data Sources
	Optimizing performance
	Installing multiple instances of a single data source
	Live debugging and testing libraries
	Using Java code in libraries
	File structure of a Data Source Connector
	Requirements for a Data Source Connector
	Additional recommendations for Data Source Connectors
	Job Documentation Tips

